CENG 567
Reinforcement Learning
| Course Information | |||||||||
| CENG 567
|
Reinforcement Learning | ||||||||
| Course Semester | T+A | Credits | ECTS Credits | ||||||
| 3+0 | 3 | 9 | |||||||
| Course Language | English | ||||||||
| Course Level | Graduate | ||||||||
| Department/Program | Computer Engineering Department/Computer Engineering MS Program | ||||||||
| Mode of delivery | Face to face | ||||||||
| Course Type | Compulsory [ ] / Technical Elective [ x ] | ||||||||
| Course Objectives | This course introduces reinforcement learning, covering key techniques like multi-armed bandits, Q-learning, and deep reinforcement learning. Students will learn decision-making under uncertainty and apply advanced methods like actor-critic models to real-world problems.
|
||||||||
| Course Content | Multi-armed bandits, epsilon greedy, upper confidence bounds, thompson sampling, contextual bandits, markov decision process, dynamic programming, policy and value iteration, monte carlo methods, temporal difference, Q-learning, deep Q-learning, actor-critic models. | ||||||||
| Course Prerequisites |
None |
||||||||
| Course Coordinator | Asst. Prof. Dr. Osman GÖKALP | ||||||||
| Course Lecturer(s) | Asst. Prof. Dr. Osman GÖKALP | ||||||||
| Course Assistants | None | ||||||||
| Course Internship | None | ||||||||
| Course Resources | |||||||||
| Resources |
Mastering Reinforcement Learning with Python, Enes Bilgin, Packt Publishing, 2020.Reinforcement Learning, second edition: An Introduction, Richard S. Sutton and Andrew G. Barto, Bradford Books, second edition. |
||||||||
| Planned Learning Activities and Teaching Methods | |||||||||
| Presentations, homeworks, research. | |||||||||
| Assessment Criteria | ECTS Workload Calculation | ||||||||
| In-term Studies | Quantity | Percentage% | Activities | Quantity | Duration | Workload (Hour) | |||
| Home works | 2 | 20% | Weekly course | 14 | 3 | 42 | |||
| Cases | – | Outside Activities About Course (Homework, Reading, Individual studies etc.) | 14 | 2 | 28 | ||||
| Laboratory works | – | ||||||||
| Other activities | – | ||||||||
| Projects | – | ||||||||
| Quizzes | – | Exams and Exam Preparations (Attendance, Presentation, Midterm
exam, Final exam, Quiz etc.) |
2 | 5 | 10 | ||||
| Midterm exams | 1 | 30% | |||||||
| Final examination | 1 | 50% | |||||||
| Total | Total Workload | 80 | |||||||
| Course Learning Outcomes | |||||||||
| The students who succeeded in this course will be able to: | |||||||||
| No | Explanation | ||||||||
| 1 | To understand reinforcement learning fundamentals and key concepts. | ||||||||
| 2 | To apply core algorithms like Q-learning and deep Q-learning. | ||||||||
| 3 | To analyze Markov decision processes and policy optimization. | ||||||||
| 4 | To implement reinforcement learning solutions in real-world scenarios. | ||||||||
| Weekly Course Plan | |||||||||
| Week | Topics | ||||||||
| 1 | Introduction to Reinforcement Learning (RL) | ||||||||
| 2 | Multi-Armed Bandits, Epsilon Greedy | ||||||||
| 3 | Upper Confidence Bounds, Thompson Sampling | ||||||||
| 4 | Contextual Bandits | ||||||||
| 5 | Markov Decision Process | ||||||||
| 6 | Dynamic Programming, Policy Iteration, Value Iteration | ||||||||
| 7 | Monte Carlo Methods | ||||||||
| 8 | Temporal Difference Learning, SARSA, Q-Learning | ||||||||
| 9 | Deep Q-learning | ||||||||
| 10 | Actor-Critic Models, A2C | ||||||||
| 11 | Deep Deterministic Policiy Gradient | ||||||||
| 12 | Applications of RL – I | ||||||||
| 13 | Applications of RL – II | ||||||||
| 14 | Overview of the Course and Feedbacks | ||||||||
Instructor(s)
Other MS Courses
- CENG 500
- CENG 501
- CENG 502
- CENG 503
- CENG 504
- CENG 505
- CENG 506
- CENG 507
- CENG 508
- CENG 509
- CENG 511
- CENG 512
- CENG 513
- CENG 514
- CENG 515
- CENG 516
- CENG 517
- CENG 518
- CENG 521
- CENG 522
- CENG 523
- CENG 524
- CENG 525
- CENG 531
- CENG 532
- CENG 533
- CENG 534
- CENG 541
- CENG 542
- CENG 543
- CENG 544
- CENG 551
- CENG 552
- CENG 555
- CENG 556
- CENG 557
- CENG 561
- CENG 562
- CENG 563
- CENG 564
- CENG 565
- CENG 566
- CENG 568
- CENG 590
- CENG 608
- CENG 611
- CENG 612
- CENG 613
- CENG 631
- CENG 632
- CENG 641
- CENG 642
- CENG 643
- CENG 651
- CENG 661
- CENG 662
- CENG 663

